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Improving Microbial Growth Prediction
by Product Unit Neural Networks
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Introduction

Factors that most affect microorganism growth are, among
others, pH, storage temperature, water activity, preservatives,

and the modification of the atmosphere during packaging (Gibson
and others 1988). Given an adequate database, the response of many
microbes in food could be predicted from knowledge of the food’s for-
mulation, processing, and storage conditions and afterward can be
applied in food product development and food safety risk assess-
ment. There is a growing interest in microbial growth modeling as an
alternative to time-consuming, traditional, microbiological enumer-
ation techniques.

The models most frequently used for this purpose are usually poly-
nomial regressions (such as Response Surface, RS), which provides
a great simplicity and availability of user-friendly software. In this
type of model, the coefficients of the equation can be estimated by
least square or through local search algorithms based on the gradient,
such as that of Levenberg-Marquardt (Levenberg 1944; Marquardt
1963). Moreover, RS requires the model order to be specified a pri-
ori (that is, if it is of 1st, 2nd, or 3rd order). They also need initial val-
ues for the coefficients of the model, so that the local search algorithm
can obtain the model in the most efficient way. More recently, new
models have been introduced, some involving the application of
Artificial Neural Networks (ANN) of the multilayer perceptron type
(MLP). These have amply demonstrated their capacity for predict-

ing the parameters associated with microbial growth (Hajmeer and
others 1997; Geeraerd and others 1998; Hervás and others 2001;
Jeyamkondan and others 2001; Lou and Nakai 2001; García-Gimeno
and others 2002, 2003, 2005).

This article presents a new approach for the ANN modeling of bac-
terial growth using Neural Network models based on Product Units
(PUNN) instead of on sigmoidal units (MLP) like the one described
previously. The use of this new type of neuronal network using prod-
uct base functions is justified in the search for more easily interpret-
able models without decreasing either the prediction capacity or the
robustness of models. On the other hand, this type of model can be
proposed in predictive microbiology because it is logical to suppose
a priori that a strong interaction exists between the factors that af-
fect the microbe growth parameters. Thus the use of PUNN has 2 ma-
jor advantages: these product units are more effective in picking up
the interactions between the factors and they are easier to interpret
than MLP. In contrast to the usual black-box model or neural network
based on sigmoidal functions, we can consider these networks as
being “gray-box” models. The product units have the ability of imple-
menting higher-order functions and therefore they can also imple-
ment polynomial functions as a particular case (Gurney 1992). More-
over, PUNN models approaches more easily that MLP to complex
decision making because its potential function is not so smoothing.

Despite these advantages, PUNNs have a major drawback. Their
training is more difficult than that of standard sigmoidal-based net-
works using a back-propagation local algorithm (Durbin and Rumel-
hart 1989) because small changes in the exponents can cause great
changes in the total error. The main reason for this difficulty is that
the PUNN tend to more local minima and plateaus (Ismail and En-
gelbrecht 2000). It is a well known issue that back-propagation is not
efficient in training product units. Several efforts have been made to
develop learning methods for PUNN (Janson and Frenzel 1993; Ismail
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and Leerink and others 1995; Engelbrecht 1999, 2000). Martinez-Estu-
dillo and others (2005) proposed a model of evolutionary computa-
tion of PUNN to overcome this difficulty that evolves both the
weights and the structure of these networks by using an algorithm
based on evolutionary programming.

This article presents a new approach to the ANN modeling of
bacterial growth; using Neural Network models based on Product
Units (PUNN) instead of on sigmoidal units (MLP) of kinetic param-
eters (lag-time, growth rate and maximum population density) of
Leuconostoc mesenteroides and those factors affecting their growth
such as storage temperature, pH, NaCl, and NaNO2 concentrations
under anaerobic conditions.

Materials and Methods

EEEEExperxperxperxperxperimental dataimental dataimental dataimental dataimental data
The specific growth rate (Gr), lag-time (Lag), and maximum pop-

ulation density (yEnd) data of L. mesenteroides subsp. mesenteroides
ATCC 8293 (Spanish Collection of Strain Types, Valencia) were taken
from Zurera-Cosano and others (2005).

A Central Composite Design (CCD) was used, incorporating the
following variables and levels: temperature (10.5 °C, 14 °C, 17.5 °C,
21 °C, and 24.5 °C), pH (5.5, 6, 6.5, 7, and 7.5), concentrations of so-
dium chloride (0.25%, 1.75%, 3.25%, 4.75%, and 6.25%) and concen-
trations of sodium nitrite (0, 50, 100, 150, and 200 ppm) under
anaerobic conditions shown in Table 1. Each of the 25 different fac-
tor combinations thus obtained was replicated 7 times, and 6 center
point replications were performed to estimate experimental vari-
ance.

MMMMModels devodels devodels devodels devodels developmentelopmentelopmentelopmentelopment
PUNN is a powerful basis for its application in modeling, and we will

try to explain how these models are carried out. To start processing
data, we avoided saturation problems in the product basis functions
by preventing the driving of the weights to infinity and by improving
the learning process. Each of the input and output variables should be
scaled in the rank [0.1, 1.1] and [1, 2] respectively. The new scaled vari-
ables are named t*, p*, c* and n*, for the input variables and l*, g* and
y* for the output variables. For example, T and l is calculated as follows:

(1)

(2)

where T and l are the original temperature and Lnlag respectively.
Tmin, lmin, Tmax, and lmax are the minimum and maximum values, and
t*, l* are the scaled temperature and Lnlag. Once obtained, model es-
timations should be de-scaled following the same equation.

We begin by defining the family of functions to be used in the
modeling process and their representation through the correspond-
ing PUNN model. The general mathematical description of a fami-
ly with this type of function is as follows:

Let �k be a n dimensional Euclidean space and K a compact
subset of it defined by K = {(x1, x2, . . . , xk ) �  , i = 1, 2, . .

. , k}. We represent by F(K) the family of functions  giv-
en by

Table 1—Average of observed (OBS) and estimated growth rate (Gr [/h]), lag time (Lag [h]), and maximum population density
(yEnd [OD]* by product unit neural networks (PUNN) of Leuconostoc mesenteroides for model developmenta

Gr (/h) Lag (h) yEnd (OD)

T (°C) pH NaCl (%) NaNO2 (ppm) OBS PUNN OBS PUNN OBS PUNN

10.5 6.5 3.25 100 0.106 0.102 16.919 16.583 0.382 0.354
14 6 1.75 50 0.161 0.164 7.535 7.087 0.706 0.733
14 6 1.75 150 0.149 0.160 7.855 8.428 0.286 0.308
14 6 4.75 50 0.139 0.130 12.446 13.802 0.297 0.313
14 6 4.75 150 0.120 0.123 21.743 20.868 0.094 0.083
14 7 1.75 50 0.180 0.181 6.571 6.631 0.978 0.930
14 7 1.75 150 0.168 0.177 7.854 7.603 0.487 0.451
14 7 4.75 50 0.142 0.140 12.817 10.929 0.617 0.636
14 7 4.75 150 0.130 0.133 11.168 11.220 0.305 0.317
17.5 5.5 3.25 100 0.103 0.102 12.914 10.543 0.544 0.451
17.5 7.5 3.25 100 0.169 0.164 6.122 5.479 0.824 0.832
17.5 6.5 3.25 0 0.191 0.201 5.335 5.361 1.028 0.932
17.5 6.5 3.25 200 0.157 0.161 9.419 9.273 0.233 0.220
17.5* 6.5 3.25 100 0.172 0.172 6.475 6.663 0.548 0.576
17.5* 6.5 3.25 100 0.172 0.172 6.602 6.663 0.529 0.576
17.5* 6.5 3.25 100 0.170 0.172 6.356 6.663 0.539 0.576
17.5* 6.5 3.25 100 0.176 0.172 6.498 6.663 0.537 0.576
17.5* 6.5 3.25 100 0.178 0.172 6.679 6.663 0.536 0.576
17.5* 6.5 3.25 100 0.167 0.172 6.063 6.663 0.542 0.242
17.5 6.5 6.25 100 0.141 0.142 14.864 6.663 0.269 0.644
17.5 6.5 0.25 100 0.363 0.352 3.589 6.663 0.632 0.794
21 6 1.75 50 0.336 0.338 3.793 14.720 0.783 0.334
21 6 1.75 150 0.312 0.317 4.259 3.670 0.366 0.397
21 6 4.75 50 0.323 0.309 9.088 3.863 0.371 0.120
21 6 4.75 150 0.269 0.274 12.648 4.598 0.129 0.955
21 7 1.75 50 0.363 0.360 3.630 8.641 1.049 0.634
21 7 1.75 150 0.337 0.339 4.272 13.122 0.634 0.716
21 7 4.75 50 0.313 0.323 5.880 3.419 0.696 0.373
21 7 4.75 150 0.296 0.288 5.301 3.864 0.367 0.504
24.5 6.5 3.25 100 0.409 0.411 3.658 5.924 0.480 0.354

* OD = Optical density.
a* = Center point conditions.
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(3)

where �j, w ji � , with w ji � 0 and p, k, � i.
This typology of functions can be viewed as a polynomial with real

exponents, and by appropriately choosing the exponents of the func-
tion f, it is easy to observe that the polynomial regression models are
subsets of F(K). For example, by the appropriate selection of the ex-
ponents, w ji � {0, 1, 2} a 2nd-order polynomial regression model or
quadratic response surface can be obtained:

(4)

Let now the data set be DE {xb yi} , for l = 1, 2, . . . , n for which the
regression model can be expressed by means of a lineal potential base
function topology or PUNNs as Eq. 1. In these models, the product
units can be defined as follows:

(5)

where w j  = (w j1 , w j2 , . . . , w jk) is a parameter set for the potential
base functions.

This kind of function topology can be represented by a neural network
architecture, as shown in Figure 1, with the following features: 1 input
layer for the input variables, 1 hidden layer with a suitable number of
nodes, and 1 output layer, expressed as: “n° of input neurons”:”n° of
hidden neurons”:”n° of output neurons.” Furthermore, the nodes of one
layer cannot be connected with each other and there are no direct con-
nections between the input and output layers. In the microbial growth
model addressed in this study, the independent variables (x1, x2, . . ., xk)
are the 4 environmental conditions considered, the P nodes in the hid-
den layer represent the term numbers of the model and therefore the

number of product units considered, and the node in the output layer
corresponds to the microbial kinetics parameters, the Lag or Gr or yEnd

The transfer function of the j-th node of the hidden layer is given
by Eq. 3, in which w ji � [0, L] is the weight for the connection between
the i-th node of the input layer and the j-th ones of the hidden lay-
er. The linear transfer function of the node of the output layer is given
by Eq. 1, in which � ji � [-M, M] is the weight for the connection be-
tween the j-th node of the hidden layer and the node of the output
layer. In summary, the topology for the functions defined in Eq. 1 can
readily be represented by a PUNN model.

EEEEEvvvvvolutionarolutionarolutionarolutionarolutionary algory algory algory algory algorithmithmithmithmithm
The general structure of the evolutionary algorithm, which is

applied to an initial population of Np individuals, can be supported
in the following steps:
1. Generate initial population with randomly generated networks.
2. Evaluate the fitness score for each individual of the population on

the basis of the objective function.
3. Copy the best individual to the next generation.
4. The best 10% of a population substitutes the worst 10% of individ-

uals.
5. Apply parametric mutation operators to the best 10% of the pop-

ulation.
6. Apply structural parametric mutation to the rest of the population.
These steps should be repeated until the population converges or a
previous fitted number of generation is reached.

The evolution of product-unit networks uses the operations of
replication and 2 types of mutation: parametric and structural. Para-
metric mutation alters the values of the exponents and coefficients
of the functions of the population and structural mutation alters the
architecture if the net (connections and nodes). Parametric muta-
tions are applied to each parameter wji and bj of a function f with
gaussian noise (a normal random variable is added to the weights),
where the variance of normal distribution depends on the function’s
T. The severity of a mutation to an individual f is dictated by the
adaptive function T(f ) given by:

T(f) = 1 – A(f)   0 � T(f) � 1 (6)

Figure 1—Representation of neural
network based on product units model.
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where A(f) is the fitness function. Thus, the adaptive function T(f) is
determined by how close the function is to the solution to the prob-
lem. So networks with a high adaptive function are mutated severely,
and those with a low adaptive function only slightly. This allows a
coarse-grained search initially, and progressively finer-grained ones
as the network approaches the solution of the problem. More details
on parametric mutation are shown in Appendix A.

Structural mutation is more complex because it implies a modi-
fication of the structure of the network. There are 5 different struc-
tural mutations:

(1) Addition of a node: The node is added with no connections to
others layers to enforce the behavioral link with its parents. (2) De-
letion of a node: A node is selected randomly and deleted together
with its connections. (3) Addition of a connection: A connection is
added, with weight 0, to a randomly selected node. There are 2 types
of connections: from an input node to a hidden node and from a
hidden node to the output node. (4) Deletion of a connection: A con-
nection is selected and removed. (5) Joint node: 2 hidden nodes a and
b selected randomly were replaced by another node c.

All the previously mentioned mutations are made sequentially in
the same generation on the same network. For each mutation there
is a minimum value, �m and a maximum value �M and the number
of elements (nodes and connections) involved in the mutation is
calculated as follows:

(7)

where U(0, 1) is an uniform distribution un the interval [0, 1]
Finally, the system evolves until the average fitness of the network

population stops growing; that is, if during 20 generations there is no
improvement in the average performance of the best 20% of the pop-
ulation, or until a number when functions �1(t) and �2(t) are near zero,
or when a number of generations decided a priori is reached (3000).

The values of parameters used by the evolutionary algorithm for
PUNN are shown in Table 2. It should be pointed out that the algo-
rithm is quite robust to the modification of these parameters.

To evaluate the fitting and prediction accuracy of each model,
Root-Mean-Squares Error (RMSE) and Standard Error of Prediction
percentage (% SEP) were used:

%SEP = 100 � (8)

and RMSE = (9)

where gi is the value of the growth parameter observed; is the

predicted value obtained with our PUNN model, and is the mean
of observed values.

The Standard Error of Prediction percentage (% SEP), is a relatively
typical deviation of the mean prediction values and has the advantage,
compared with other error measurements, of not being dependent on
the magnitude of the measurements while it can be used to compare the
error of the different growth parameters for different ranges and scales.

To increase the interpretability of the PUNN models found, a series
of rules are set up to simplify the number of addends in the original
model for certain domains of the input variables (Setieno and others
2002). Through these rules we will try to get simpler models (in certain
subregions of the definition domain of the factors used as net input)
that are therefore more easily interpretable without losing their gen-
eralization capacity. Rules for function approximation normally take
the following form: if (a condition or restriction in the input variables,
x, is satisfied), then the output predicts y = f(x), where f(x) is a constant
or a linear or nonlinear simple function of x. This kind of rule is accept-
able if we take into account its similarity to nonlinear classification and
statistical regression methods. Thus, in this study we use heuristic rules
in our best PUNN models to quantify the growth parameters as a func-
tion of the environmental factors used.

The new model PUNN will be compared with RS (Zurera-Cosano
and others 2005) and MLP (García-Gimeno and others 2005) estima-
tions developed previously.

MMMMModel vodel vodel vodel vodel validationalidationalidationalidationalidation
The models were tested against a growth data set obtained under

the same experimental conditions (30% of the total data set), but not
included in the development of the model (internal validation, test,
or generalization). They were also contrasted with a new data set
obtained under different experimental conditions, but included in
the range of experimental design (external validation) (Table 3),
which would be the equivalent of what has been called by other pre-
dictive microbiology authors “mathematical validation” (Van Impe
and others 1998). To evaluate the predictive capacity of the proposed
model, the aforementioned error criteria, RMSE and SEP (%), were
calculated together with bias factors (Bf) and accuracy factors (Af)
(Ross 1996).

(10)

(11)

where gi is the observed i-th value and is the predicted i-th value.

Table 2—parametric values used by the evolutionary algorithm for product unit neural networks for the estimation of Leu-
conostoc mesenteroides

Structural mutation parameters: Parametric mutation
Population parameters  interval [Dm, DM] Parameters of Eq. 16

Size, NP 1000 Add nodes [1, 2] a1(0) 1
Maximum nr of hidden nodes, r 8 Delete nodes [1, 2] a2(0) 5
Nr of independent variables, k 4 Add connections [1, 6] b 0.5
Exponent interval, [–M, M] [0, 3] Delete connections [1, 6] r 10
Coefficient interval, [0, L] [–5, 5]
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Results and Discussion

The best model from the entire PUNN model nets generated have
been selected (that is, those with the lowest Standard Error of

Prediction for generalization set, SEPG value) for each of the kinet-
ic parameters.

For the growth rate, the best model had a 4:5:1 architecture net and
was as follows:

Gr* = 2.9118 (T*) 1.91 (S1)

+6.0509 (T*) 6.55 (NaCl*) 5.25 (S2)

+1.8178 (T*) 0.17 (pH*) 0.13 (NaCl*) 0.11 (S3)

–0.2551 (T*) 0.11 (pH*) 1.59 (NaCl*) 0.40 (S4)

–4.3718 (T*) 1.82 (NaCl*) 0.56 (NaNO2*) 0.04 (S5)

For the lag-time, the best model had a 4:5:1 architecture net and was
as follows:

Lnlag* = 2.1146 (NaCl*) 0.19 (S1)

+1.3187 (NaCl*) 1.79 (NaNO2*) 2.09 (S2)

–1.5026 (T*) 0.75 (pH*) 0.08 (NaCl*) 0.58 (S3)

+2.6521 (T*) 0.80 (NaCl*) 2.65 (NaNO2*) 0.58 (S4)

–3.6252 (T*) 0.39 (pH*) 0.28 (NaCl*) 2.66 (NaNO2*) 1.46 (S5)

For the maximum density population, the best model had a 4:6:1
architecture net and was as follow:

LnyEnd* = 7.1439 (T*) 1.19 (pH*) 2.17 (NaCl*) 0.89 (NaNO2*) 3.65 (S1)

–0.8340 (T*) 0.07 (pH*) 0.19 (NaCl*) 1.80 (S2)

+ 2.0445 (NaCl*) 0.03 (S3)

–2.2889 (T*) 0.23 (pH*) 0.51 (NaCl*) 0.54 (NaNO2*) 3.00 (S4)

+2.8170 (T*) 1.28 (pH*) 2.19 (NaCl*) 1.31 (S5)

–11.3193 (T*) 3.89 (pH*) 4.83 (NaCl*) 1.27 (NaNO2*) 0.90 (S6)

Because these models give an impression of being complex from
the start, and to enable the best degree of interpretability possible,
we are going to set up a series of simple rules to simplify the expres-
sion of the model. S1 to S6 are the 6 addends of the equations and
they are associated to each node of the hidden layer of the net. There
are addends in some areas of the factors that do not contribute sig-
nificant values for the prediction of the corresponding growth param-
eter (Table 4).

Studying how the different addends affect the estimation of the
models, we observed that the Gr equation has S3 as the base or tenden-
tial addend, expresses the obvious interaction between the temper-
ature, pH, and salt, and over it the other 4 addends are accommodated,
2 by 2. S1 and S5 reaches high values, the 1st with a positive sign as-
sociated only with the temperature and the 2nd with a negative 1 as-
sociated with temperature and chloride. It is observed that the effect
of the temperature is compensated, while when NaCl increases, the Gr
decreases significantly. The addends S2 and S4 have a relative value
lower than the previous ones, the 1st with a positive sign and the 2nd
negative and only results in somewhat significant values for S2 when
the temperature and the NaCl are high and for S4 when the pH is high.
This means that when the temperature increases along with the salt,
the values of the 2 addends are compensated, whereas when the pH
increases, the Gr decreases somewhat. Nitrate hardly affects the Gr
because the temperature deprives it of protagonism.

Under refrigeration conditions (T � 14 °C) and/or with little salt,
the equation can be simplified to only 2 addends (Table 4). When the
pH is low (pH � 5.5), the S4 addend can be eliminated.

In the lag equation, the primary (S1) and 3rd (S3) addends always
appear in the model with different values of environmental factors,
which is why they are its base addends. This indicates that the lag
value depends directly and basically on the amount of salt, and in-
versely on the interaction of salt with the temperature and the pH,
and to a lesser extent on the amount of nitrate. The relationship
between the S1 values is approximately double those of S3 when the
values of the factors are high. This means that a strong direct relation-
ship exists between NaCl and lag. Table 4 shows that when the salt
hits minimum values, the equation can be simplified to 2 addends.

Table 3—Average of observed (OBS) and estimated growth rate (Gr [/h]), Lag time (Lag [h]), and maximum population density
(yEnd [OD]* by Product Unit Neural Networks (PUNN) of Leuconostoc mesenteroides for external validation in anaerobic con-
ditions

Gr (/h) Lag (h) yEnd (OD)

T (°C) pH NaCl (%) NaNO2 (ppm) OBS PUNN OBS PUNN OBS PUNN

10.5 6.5 3.25 50 0.112 0.102 11.01 14.65 0.562 0.508
10.5 6.5 3.25 100 0.106 0.102 15.06 16.58 0.385 0.354
14 7 1.75 0 0.214 0.187 3.53 6.43 1.154 1.025
14 7 4.75 0 0.149 0.150 14.36 10.02 0.979 0.748
17.5 6 1.75 50 0.274 0.241 3.24 5.14 0.853 0.760
17.5 6 3.25 50 0.157 0.166 3.66 6.78 0.768 0.570
17.5 6.5 0.25 50 0.374 0.355 2.42 3.64 0.993 0.763
17.5 6.5 1.75 50 0.305 0.257 4.06 4.86 0.912 0.904
17.5 6.5 1.75 100 0.297 0.250 4.41 5.14 0.529 0.684
17.5 6.5 3.25 50 0.175 0.181 5.93 6.10 0.890 0.804
21 6 1.75 0 0.369 0.367 3.11 3.61 1.128 0.862
21 6 3.25 50 0.332 0.213 5.24 5.00 0.540 0.622
24.5 6 1.75 150 0.402 0.438 4.08 3.55 0.343 0.360
24.5 6.5 3.25 50 0.416 0.439 2.66 3.25 0.763 0.878
24.5 6.5 3.25 150 0.389 0.393 3.56 4.04 0.382 0.44

* OD = Optical density.
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The effect of the temperature and NaCl is compensated between S3,
S4, and S5, although when pH rises the lag is decreased.

When the temperature increases and the pH goes down, the lag is
seen to decrease due to S3 because the temperature is compensat-
ed by S4 and S5 addends and the pH continues to show an inverse
relationship with lag in the S5 addend. Increasing the nitrate increas-
es the lag because the sum of the values of the S2, S4, and S5 addends
is always positive where nitrate appears.

In the yEnd model, the addend 3 is the base addend around which
the other addends are accommodated, showing the great influence
salt holds on this kinetic parameter. The interaction of all the factors
in the S1, S4, and S6 addends results in a negative effect added onto
the value of yEnd. For temperature and high pH, the effect on yEnd
through the added effect of the S2 and S5 addends is positive. For
small values of some factors, some of the addends in the model are
not significant enough. So if the pH is low, the S1, S5, and S6 addends
are insignificant, allowing simplification of the equation as can be
seen in Table 4. When nitrates are absent (NaNO2 = 0), then the S1 and
S4 addends do not contribute significant values for the calculation
of yEnd. When salt is 0.25%, the S2 addend is not significant (Table
4). The S6 addend loses relevance when pH and T are at minimum
values (Table 4). On observing the base addends of yEnd, these are
similar to the base addends of lag, which shows that the salt is the
most influential element in both.

The estimations errors found in PUNN are in general significantly
inferior to those found in the other 2 models. Table 5 shows the SEP,
RMSE Bf and Af found in the best model for each variable. It is impor-
tant to mention that the experimental design carried out with (CCD)
was originally meant for the treatment with RS that later was applied
to MLP models and, in this study, to PUNN models. This design en-
tails a series of disadvantages. The low error must be accompanied
by a model that is not too complex and that has a good generaliza-
tion capacity. New data in the same conditions (internal validation)
and, later, data in different conditions but always within the range
of the design (external validation) were compared with the estima-
tions. This estimation should also be contrasted with other authors’
data but in our knowledge there is no L. mesenteroides model pub-
lished to compare with.

SEPG, Bf, and Af values obtained for the 3 kinetic parameters by the
best model of PUNN, RS, and MLP models (Table 5) during the pro-
cess of internal validation (generalization) were compared.

The model with least SEPG was PUNN (5.59% SEPG) for lag. The
number of connections or equation parameters of this model (18) was
smaller than MLP (22) although in this aspect RS wins with only 8
equation parameters (Table 6). In this case, based on internal vali-
dation, as RS SEPG (6.58) is just above PUNN error, we consider that
for this kinetic parameter the RS model would be the best one.

For Gr a wide difference between SEPG is observed: PUNN (2.91%),
MLP (3.77), and RS (9.91). In this case, although the PUNN model is
more complex (17 parameters) versus RS (8) but simpler than MLP
(19), the 1st 1 could be the model chosen due to its considerably lower
error of prediction.

For yEnd the best SEPG was obtained by PUNN (12.22%). Although
it is considerably more complex (25 parameters) than MLP (13) or RS
(10), the differences in error estimation could compensate this.

These 1st draft conclusions must be corroborated by the analysis
of what happens in the external validation.

Furthermore, in all cases, Bf and Af were close to unity, which in-
dicates a good fit between the observations and predictions, as was
also the case for RS and MLP. For the parameter Gr, Bf must be greater
than 1 because in the case of spoilage microorganisms, this indicates
that the model creates accurate shelf life predictions, because it will
estimate beforehand any sensorial alterations in the product. In this

study, the Gr parameter had a very good Af value (1.03), within the
range of acceptability criteria described by Ross and others (2000)
who considered an Af value to be acceptable with an increase of up
to 0.15 (15%) for each variable included in the model. Therefore, in
our study, with 4 variables (temperature, pH, and concentration of
salt and nitrites), we should expect Af values of up to 1.6.

Comparison with other authors’ studies was impossible because
no model of L. mesenteroides has been achieved. Scientific literature
contains few references to the internal validation of predictive mod-
els of other bacteria, and the results found were very similar to those
determined in our own study. This is the case for the research carried
out by Hervás and others (2001), who obtained SEP values of around
9% for Gr in an Artificial Neural Network for Salmonella spp., and
García-Gimeno and others (2002), who observed values of between
11% to 17% for Gr and Lag in Lactobacillus plantarum.

All of this demonstrates that the model has good generalization
ability when it comes to accurately estimating the growth response
of L. mesenteroides.

For external validation, comparison with other authors’ studies
would be advisable but was impossible in this case because no model
of L. mesenteroides has been achieved. Thus the model estimation
was validated against a new data set in different conditions but with-
in the range of the model. SEPG values obtained by PUNN were lower
for lag and GR but higher for yEnd than MLP (Table 5).

In all cases, Bf and Af were close to unity, which indicates a good
fit between the observations and predictions for the 3 models. During
the process of external validation of the predictive models, several
authors have accepted Bf values of between 0.75 and 1.25 as being
acceptable for spoilage microorganisms (Dalgaard 2000). According
to these criteria, each of the models elaborated can be considered
suitable to describe the growth of L. mesenteroides.

For the parameter Gr, the Bf is below 1, which means that the models
underestimated this parameter, although the Af value indicates an
acceptable estimation error (<1.60). Other studies describe values for
bias and accuracy factors similar to those obtained in our study. Lebert
and others (2000) observed good fit when they applied mathematical
validation to models that estimate generation time for Pseudomonas
spp. (Bf = 0.82 to 1.16 and Af = 1.13 to 1.24). In a different study on the
same microorganism, values were produced that were similar to the
predictions for these parameters, Bf = 0.84 and Af = 1.23 (Neumeyer and
others 1997). Another study undertaken by Valík and Pieckovä (2001)
with spoilage moulds produced values very close to unity, Bf = 1.01 and
Af = 1.07, showing the goodness of fit and the accuracy of the RS model
elaborated. Arinder and Borch (1999) observed similar values for these
factors, Bf = 1.02 and Af = 1.36, for the growth rate of Pseudomonas spp.

Lag models also underestimate their value because Bf is higher than
1, meaning that it predicts higher times of adaptations of the micro-
organism than observed. Af values indicate acceptable values, all below
the criteria. The prediction of the lag-time poses more problems for our
models than the other parameters because it depends on several fac-
tors, such as the physiological stage and size of the inoculum and pre-

Table 4—Rules derived from the best Product Unit (PUNN)
models

IF THEN

T � 14 °C, and/or NaCl � 1.75 Gr* = S1 + S3
pH � 5.5 Gr* = S1 + S2 + S3 + S5
NaNO2 = 0 LnLag* = S1 + S3 + S4 + S5
NaCl = 0.25 LnLag* = S1 + S3
NaCl = 0.25 LnyEnd* = S1 + S3 + S4 + S5 + S6
pH = 5.5 o LnyEnd * = S2 + S3 + S4
NaNO2 = 0 LnyEnd * = S2 + S3 + S5 + S6
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vious growth conditions (Robinson and others 1998; Ross and others
2000). Other authors, for example García-Gimeno and others (2003),
conducted a study using Escherichia coli O157:H7, and obtained ac-
curate estimations using an MLP model (Bf = 0.95 and Af = 1.24). For
Staphylococcus aureus, Zurera-Cosano and others (2004) observed
values of Bf = 0.87 to 1.54 and Af = 1.52 to 2.22 using a Surface Response
model in aerobic and anaerobic conditions. The values obtained in our
study are within the range described by other authors and, in fact, are
even better because they are closer to unity.

The kinetic parameter yEnd is not often modeled in predictive
microbiology and is included in only a few models, such as those
developed by McCann and others (2003) and Nauta and others
(2003). In our study, we obtained values close to unity for Bf, although
they did slightly underestimate the growth response of L. mesenteroi-
des. The yEnd parameter has a poorer generalization SEP for PUNN,
the MLP being the model with the best SEPG, Bf and Af.

When choosing a predictive model, it is not only important to bear
in mind estimation errors, but also the complexity of the model (num-
ber of connections or coefficients), which is another decisive factor in
the comparison of the models developed, even though in other pub-
lications this information is not specified (Lou and Nakai 2001).

Several authors highlight that MLP models produce better estima-
tions of kinetic parameters than other models such as the RS
(Hajmeer and others 1997; Hervás and others 2001; Lou and Nakai
2001; García-Gimeno and others 2002, 2003). In the studies conduct-
ed by García-Gimeno and others (2002, 2003) on L. plantarum and
E. coli O157:H7, respectively, the MLP models were chosen instead
of RS models based on the lower SEP, although the MLP models had
a greater degree of complexity. Hajmeer and others (1997) reported
on an MLP for Shigella flexneri with lower error values (4% to 12%
mean absolute relative error) but with a considerable degree of com-
plexity (142 parameters). Some researchers do not agree with the use
of MLPs to predict growth parameters, due to their complexity. How-
ever, thanks to genetic algorithm pruning, MLPs have been shown to
be even simpler than regression in certain cases (Hervás and others
2001; García-Gimeno and others 2002).

In our study, PUNN and MLP models were more complex than the
RS models, especially in the case of the parameter Gr, but described
lower SEPG. In several publications, MLP models have been chosen
over others although these models are more complex because they
produce fewer errors in prediction values (Hajmeer and others 1997;
García-Gimeno and others 2002, 2003).

The possibility of describing the development of spoilage bacteria in
foods by predictive microbiology, and relating the spoilage of the product
to a certain level of microorganisms would allow us to estimate the shelf

life of different products. Of course, the model should include microor-
ganism behavior data throughout the general shelf life of that type of
product to estimate realistic shelf life duration of any of the products. The
more accurate the models are, the more accurate our predictions will be,
and this is an advantage for their practical application.

Conclusions
We have defined neuronal net models of potential base, PUNN

and of sigmoidal base MLP, as models that use the same methodology
to approximate functions of a continuous type, where the problem
is obtaining the optimum number of base functions that best adjust
to a specified function, as well as the coefficients of these models. To
do this we have used algorithms of evolutive computation to opti-
mize the search for the best designs and coefficients of neuronal net
models. The analysis of growth predictions under experimental con-
ditions showed that the MLP and the PUNN satisfactorily represent
the experimental data, although the best models are obtained with
the PUNN models, which are much easier to interpret than the MLP
ones. And here rests our treatise on the balance between the com-
plexity of the model and the greater accuracy of the estimations.

With this work we have proposed a new approach to neural nets
estimations for its application on predictive microbiology, searching
for models with easier interpretation, and that has the advantage of
having a great ability to fit the boundaries of the range of the input
factors. We consider that there is still a lot left to do, but PUNN could
be very valuable instrument for mathematical modeling.
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Table 6—Statistical comparison (P values) for Levene and stu-
dent t tests of the SEPG and number of connections for MLP
and PUNN for Lag, Gr, and yEnda

%SEPG Nr of connections

 MLP versus PUNN Levene test test Levene test test

Lag (h) 0.000 0.118 0.000 0.000
Gr (/h) 0.009 0.753 0.000 0.178
yEnd (OD) 0.073 0.023 0.000 0.000

aGr = growth rate; Lag = lag-time; MLP = multilayer perceptron; PUNN
= Product Units; SEPG = Standard Error of Prediction for generaliza-
tion; yEnd = maximum density population.

Table 5— Standard errors of prediction (%SEPG), Bias (Bf), and accuracy factors (Af) for the best models of Product Units (PUNN),
Response Surface (RS)a, and multilayer perceptron (MLP)b for the lag-time (Lag), growth rate (Gr), and maximum population
density (yEnd) of Leuconostoc mesenteroides

PUNN RS MLP

RMSE SEP BF AF RMSE SEP BF AF RMSE SEP BF AF

Lag-time (h) Model 0.0934 4.34 1.00 1.04 0.120 6.02 1.02 1.1 0.109 5.51 0.98 1.09
Internal validation 0.1201 5.59 0.99 1.03 0.120 6.58 1.01 1.09 0.134 6.55 0.97 1.11
External validation 0.3156 20.14 1.14 1.19 0.1321 35.08 1.17 1.33 0.5110 32.61 1.18 1.31

Growth rate (/h) Model 0.0073 3.04 1.01 1.04 0.022 10.48 1.00 1.09 0.009 4.13 1.00 1.04
Internal validation 0.0062 2.91 1.00 1.03 0.0239 9.91 0.98 1.11 0.009 3.77 1.00 1.04
External validation 0.0390 14.37 0.94 1.10 0.0415 15.31 0.95 1.12 0.0423 15.59 0.94 1.14

Maximum Model 0.0616 11.57 0.99 1.10 0.087 16.35 0.98 1.14 0.078 14.60 0.99 1.12
population Internal validation 0.0668 12.22 0.94 1.11 0.0892 16.31 0.95 1.13 0.107 14.15 0.94 1.13
density (OD) External validation 0.1416 18.99 0.94 1.17 0.1418 19.02 0.90 1.19 0.1104 14.80 0.99 1.13
aRS = data taken from Zurera-Cosano and others (2005).
bMLP = data taken from García-Gimeno and others (2005).
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Appendix
Exactly, the exponents wji of the function, which represent the

weights of the connections between an input and hidden nodes, are
modified as follows:

(1)

where  represents a normally distributed 1-
dimensional random variable with mean 0 and variance �(t)T(f). The
coefficients �j of the function f representing the weights of the con-
nections between a hidden node and the output node, are modified
as follows:

(2)

where  represents, in a similar way, a normal-
ly distributed 1-dimensional random variable with mean 0 and vari-
ance �2(t)T(f).

It should be pointed out that the modification of the exponents is
different so that coefficients, that is �1(t) << �2(t), are adaptively
changed in every generation by some predefined rule.

In essence, the functions �1(t) and �2(t) define the mutation
strength in each case and specifically, they are defined by:

(3)

where A(s) represents the fitness of the best individual in the generation
s-th and the parameters � and r are fixed, user-defined parameters.

Taking into account that a generation is defined as successful if the
best individual of the population is better than the best individual
of the previous generation, if many successful generations are ob-
served, this indicates that the best solutions are residing in a better
region in the search space. In this case, we increase the mutation
strength in the hope of finding ever better solutions closer to the
optimum solution. If the fitness of the best individual is constant in
different generations, we decrease the mutation strength. In the other
cases the mutation strength is constant.

When the mutations are realized, the fitness of the individual is
recalculated and the usual simulated annealing criterion is applied.
Being �A the difference in the fitness function before and after the
random step:
If �A � 0 the step is accepted
If �A < 0 then the step is accepted with a probability

(4)

where T is the current temperature.
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